Электротехника Пример Расчета
Если имеется схема с известными: сопротивлениями резисторов, ЭДС источников ЭДС и токами источников тока и надо рассчитать токи во всех ветвях, этой схемы, то можно воспользоваться каким либо методом расчёта схем, например методом уравнений Кирхгофа который является самым универсальным и подходит для расчёта любых схем. Для проверки правильности расчёта схемы: рассчитывается мощность потребляемая в схеме Pпр (мощность приёмников), рассчитывается мощность вырабатываемая в этой схеме Pист (мощность источников) после чего эти две рассчитанные мощности сравниваются, если они равны (м.б. С некоторой погрешностью (т.е. Различаются но чуть чуть)) то баланс мощностей сошёлся и решение считается верным, если не равны то схема пересчитывается. Рассмотрим схему на рисунке 1. В этой схеме есть: 4 резистора R1, R2,R3, R4 с сопротивлениями равными R1, R2, R3, R4 (немного неграмотно параметры элементов обозначать также как и сами элементы но так бывает удобней); источник тока J с током равным J и источник ЭДС с напряжением на нём равным по модулю его ЭДС равным E и напряжение на этом источнике противоположно по направлению ЭДС этого источника (направление ЭДС источника ЭДС на схемах указывается внутри этого источника а направление напряжения на нём указывается снаружи). На самом деле источник ЭДС создаёт только ЭДС а напряжение при этом существует на части (имеющей сопротивление) контура подключенной к этому источнику но бывает удобно составлять правильные уравнения считая что существуют напряжения на источниках ЭДС и напряжения на других элементах а ЭДС не учитывать.
На занятиях преподаватели могут использовать примеры, не вдаваясь углубленно в электротехнику, задания рассматривая их только с математической точки зрения. В качестве дополнительного материала, самостоятельной работы можно предложить задания типа: Дано: а); б); в); г). Данная статья поможет преподавателям математики разобраться в вопросе о приложении комплексных чисел в электротехнических расчетах. На примерах решения задач по ТОЭ представлены основные разделы современной теории.
Для того чтобы рассчитать схему на рисунке 1 пронумеруем в ней узлы (начиная с нуля), выберем направления токов во всех ветвях (можно произвольно), выберем независимые контуры (желательно (для метода контурных токов) в одну сторону и так чтобы они не пересекали ветви на рисунке). Далее если все (даже вспомогательные с источниками тока) контуры направлены в одну сторону и контуры не пересекают ветви на рисунке. На главной диагонали квадратной матрицы (которая слева) ставятся суммы сопротивлений резисторов входящих в соответствующие контуры, например в ячейке в первой строке и первом столбце ставиться сумма сопротивлений резисторов первого контура (контур I11 с контурным током I11), в ячейке во второй строке и втором столбце ставится сумма сопротивлений второго контура I22 (контур I22 с контурным током I22) и т.д. В остальных ячейках этой матрицы ставятся со знаком минус сопротивления резисторов общих для двух каких либо контуров, например если у первого и второго контура общий резистор с сопротивлением R3 (см. Рисунок 2) то -R3 записывается в ячейку в первой строке и втором столбце и также записывается в ячейку во втором столбце и первой строке.
Матрица с сопротивлениями умножается на матрицу контурных токов. В правой части уравнения (2) находится матрица источников. В первой строке матрицы источников находится произведение тока источника тока J на сопротивление резистора R1 со знаком плюс. Для того чтобы это записать был выбран дополнительный контур направление которого совпадает с направлением тока источника тока, это произведение записывается со знаком плюс т.к. Иначе оно могло быть записано в левой части со знаком минус потому что в левой части со знаком плюс могут быть только суммы сопротивлений контуров без источников токов, но это только при том что все контуры направлены в одну сторону и не пересекают ветви на рисунке. R1 - это резистор общий для первого контура и контура с источником тока.
Если бы источник тока был направлен в другую сторону то направление контурного тока J следовало бы выбрать в другую сторону и тогда бы в первой строке матрицы источников стояло произведение J.R1 со знаком минус т.к. Контур J был бы направлен через ветвь с резистором R1 в ту же сторону что и контур I11. Во второй строке матрицы источников находится ЭДС источника ЭДС со знаком минус т.к. Эта ЭДС направлена противоположно току (с выбранным направлением) в ветви. Уравнения этим методом можно было составить применяя другой подход. Контурные токи I11 и I22 находятся при решении уравнения (2). Ольга громыко ведьма.
Токи находятся по формулам. Для ветви с током I1 ток I1=J-I11 т.к. Контуру J принадлежит эта ветвь и направление этого контура совпадает с током I1 поэтому J со знаком плюс, контуру I11 принадлежит эта ветвь и направление этого контура не совпадает с током I1 поэтому I11 со знаком минус. Контуру I11 принадлежит только одна ветвь с током I2 и направление этого тока совпадает с направлением контура I11 поэтому I2=+I11. Для других токов аналогично. Для нахождения токов можно (если нет ветвей с одним источником ЭДС без резистора (или др. Элемента с сопротивлением)) также использовать метод узловых потенциалов.
На главной диагонали квадратной матрицы ставятся суммы проводимостей ветвей присоединённых к соответствующим узлам, например в ячейке на первой строке в первом столбце стоит сумма проводимостей присоединённых к первому узлу. К первому узлу присоединено три ветви проводимость ветви с источником тока равна нулю поэтому она не записывается, проводимость ветви с резистором R1 равна 1/R1 (т.к. Проводимость - величина обратная сопротивлению), проводимость ветви с резистором R2 равна 1/R2. В ячейке на второй строке во втором столбце записана сумма проводимостей присоединённых ко второму узлу.
В остальных ячейках этой матрицы ставятся со знаком минус проводимости ветвей между двумя какими либо узлами кроме нулевого. Проводимость между первым и вторым узлами равна 1/R2 поэтому в ячейке на второй строке и первом столбце ставится -1/R2 и в ячейке на первой строке и втором столбце ставиться -1/R2. Если между узлами нет проводимости то в соответствующую ячейку ставиться ноль.
Метод контурных токов и метод узловых потенциалов имеют сходство. Матрица с проводимостями умножается на матрицу с потенциалами узлов. В правой части уравнения (4) стоит одностолбцовая матрица источников. Первая строка матрицы источников соответствует первому узлу, вторая второму и т.д. В первую строку матрицы источников вписывается ток J источника тока J со знаком плюс т.к. Ток J источника J направлен к первому узлу (если от то со знаком '-').
Во вторую строку матрицы источников вписано произведение ЭДС E источника ЭДС E на проводимость ветви с этим источником ЭДС со знаком плюс т.к. Эта ЭДС направлена ко второму узлу (если от то со знаком '-'). Если к узлу подсоединено несколько источников то все они с соответствующими знаками записываются в соответствующую этому узлу строку. Потенциалы узлов находятся при решении уравнения (4). Токи находятся по формулам. I1= φ1/R1 т.к.
Ток на резисторе R1 равен отношению напряжения, на этом резисторе, к сопротивлению этого резистора а напряжение на этом резисторе равно разности потенциалов на этом резисторе, т.к. Ток I1 направлен (направление выбранное) от узла 1 к узлу 0 то напряжение на этом резисторе с учётом направления тока находится вычитанием потенциала узла 0 из потенциала узла 1, т.к. Потенциал узла 0 равен нулю то он не пишется и получается что напряжение на резисторе R1 с учётом направления тока равно φ1. I4=(E- φ2)/R4 т.к. Ток на резисторе R4 равен отношению напряжения, на этом резисторе, к сопротивлению этого резистора а напряжение на этом резисторе равно E-( φ2- φ0) по второму закону Кирхгофа. Для примера решим уравнение (2) и примем например что: J=1 R1=1 R2=1 R3=1 R4=1 E=1 Решить его можно например методом Крамера. Для решения методом Крамера найдём определитель (детерминант) матрицы с сопротивлениями.
Если напряжение на ветви с источником тока направлено согласно току (направление которого указано стрелками в источнике) источника тока то мощность источника тока была бы записана в уравнение (12) со знаком минус и тогда предполагалось бы что источник потребляет энергию или эта мощность была бы записана в уравнение (11) со знаком плюс. Если бы ЭДС источника была направлена в направлении противоположном току (направление которого выбрано и показано на рисунке 2 стрелкой) в этой ветви то мощность этого источника была бы записана в уравнение (12) со знаком минус или в уравнение (11) со знаком плюс. Знаки мощностей записываемых в уравнения для проверки определяются по выбранным в самом начале направлениям токов. Мощности источников равны мощностям приёмников то можно считать что баланс мощностей сошёлся и расчёт схемы выполнен правильно. Для расчёта токов I1-I4 в схеме на рисунке 2 с учётом направлений токов (как на рисунке 2) можно воспользоваться программой: J= R1= R2= R3= R4= E= I1= I2= I3= I4= Pпр= Pист= Если вы заметили ошибку то напишите о ней пожалуйста в комментарии.